首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1599篇
  免费   99篇
  国内免费   2篇
  2023年   13篇
  2022年   23篇
  2021年   67篇
  2020年   74篇
  2019年   121篇
  2018年   127篇
  2017年   59篇
  2016年   74篇
  2015年   78篇
  2014年   109篇
  2013年   150篇
  2012年   136篇
  2011年   130篇
  2010年   83篇
  2009年   70篇
  2008年   64篇
  2007年   63篇
  2006年   42篇
  2005年   30篇
  2004年   35篇
  2003年   29篇
  2002年   22篇
  2001年   6篇
  2000年   6篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   3篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1975年   2篇
  1974年   3篇
  1972年   2篇
  1968年   3篇
  1945年   1篇
排序方式: 共有1700条查询结果,搜索用时 15 毫秒
41.

Introduction

Mitotic Activity Index (MAI) is an important independent prognostic factor and an integral part of the breast cancer grading system. Thus, correct estimation of this prognostically relevant feature is essential for guiding treatment decision and assessing patient prognosis.The aim of this study was to validate the use of high resolution Whole Slide Images (WSI) in estimating MAI in breast cancer specimens.

Methods

MAI was evaluated in 100 consecutive breast cancer specimens by three observers on two occasions, microscopically and on WSI with a wash out period of 4 months. MAI was also translated to mitotic scores as in grading. Inter- and intra-observer agreement between microscopic and digital MAI counts and scores was measured.

Results

Almost perfect inter-observer agreements were obtained from counting MAI using a conventional microscope (intra-class correlation coefficient (ICCC) 0.879) as well as on WSI (ICCC 0.924). K coefficients reflected good inter-observer agreements among observers'' microscopic mitotic scores (average kappa 0.642). Comparable results were also observed among digital mitotic scores (average kappa 0.635). There was strong to perfect intra-observer agreements between MAI counts and mitotic scores for the two diagnostic modalities (ICCC 0.716–0.863, kappa 0.506–0.617). There were no significant differences in mitotic scores using both diagnostic modalities.

Conclusion

Scoring mitoses using WSI in breast cancer seems to be just as reliable and reproducible as when using a microscope. Further development of software and image quality will definitely encourage the use of WSI in routine pathology practice.  相似文献   
42.
A quantum chemistry study was carried out to investigate the strength and nature of halogen bond interactions in HXeH···XCCY complexes, where X = Cl, Br and Y = H, F, Cl, Br, CN, NC, C2H, CH3, OH, SH, NH2. Examination of the electrostatic potentials V(r) of the XCCY molecules reveals that the addition of substituents has a significant effect upon the most positive electrostatic potential on the surface of the interacting halogen atom. We found that the magnitude of atomic charges and multipole moments depends upon the halogen atom X and is rather sensitive to the electron-withdrawing/donating power of the remainder of the molecule. An excellent correlation was found between the most positive electrostatic potentials on the halogen atom and the interaction energies. For either HXeH···ClCCY or HXeH···BrCCY complexes, an approximate linear correlation between the interaction energies and halogens multipole moments are established, indicating that the electrostatic and polarization interactions are responsible for the stability of the complexes. According to energy decomposition analysis, it is revealed that the electrostatic interactions are the major source of the attraction in the HXeH···XCCY complexes. Furthermore, the changes in the electrostatic term are mainly responsible for the dependence of interaction energy on the halogen atom.
Graphical abstract
Electrostatic potential mapped on the surface of molecular electron density at the 0.001 electrons Bohr ?3 of HXeH. The color ranges in kcal mol?1 red >8.5, yellow 1.5 to 8.5, green ?5.5 to 1.5, blue <?5.5. Black and blue circles are referred to surface maxima and minima, respectively.  相似文献   
43.
44.
In this work, computations of density functional theory (DFT) were carried out to investigate the nature of interactions in solid 2,6-dibromo-4-nitroaniline (DBNA). This system was selected to mimic the hydrogen/halogen bonding found within crystal structures as well as within biological molecules. DFT (M06-2X/6-311++G**) calculations indicated that the binding energies for different of interactions lie in the range between ?1.66 and ?9.77 kcal mol?1. The quantum theory of atoms in molecules (QTAIM) was applied to provide more insight into the nature of these interactions. Symmetry-adapted perturbation theory (SAPT) analysis indicated that stability of the Br···Br halogen bonds is predicted to be attributable mainly to dispersion, while electrostatic forces, which have been widely believed to be responsible for these types of interactions, play a smaller role. Our results indicate that, for those nuclei participating in hydrogen/halogen bonding interactions, nuclear quadrupole resonance parameters exhibit considerable changes on going from the isolated molecule model to crystalline DBNA.
Figure
Electrostatic potential mapped on the surface of 2,6-dibromo-4-nitroaniline (DBNA) molecular electron density (0.001 e au?3). Color ranges for V S(r), in kcal?mol?1: red > 26.5, yellow 26.5–5.7, green 5.7– ?15.1, blue < ?15.1. Black circles Surface maxima, blue surface minima  相似文献   
45.
The insufficient load-bearing capacity of today’s tissue-engineered (TE) cartilage limits its clinical application. Focus has been on engineering cartilage with enhanced mechanical stiffness by reproducing native biochemical compositions. More recently, depth dependency of the biochemical content and the collagen network architecture has gained interest. However, it is unknown whether the mechanical performance of TE cartilage would benefit more from higher content of biochemical compositions or from achieving an appropriate collagen organization. Furthermore, the relative synthesis rate of collagen and proteoglycans during the TE process may affect implant performance. Such insights would assist tissue engineers to focus on those aspects that are most important. The aim of the present study is therefore to elucidate the relative importance of implant ground substance stiffness, collagen content, and collagen architecture of the implant, as well as the synthesis rate of the biochemical constituents for the post-implantation mechanical behavior of the implant. We approach this by computing the post-implantation mechanical conditions using a composition-based fibril-reinforced poro-viscoelastic swelling model of the medial tibia plateau. Results show that adverse implant composition and ultrastructure may lead to post-implantation excessive mechanical loads, with collagen orientation being the most critical variable. In addition, we predict that a faster synthesis rate of proteoglycans compared to that of collagen during TE culture may result in excessive loads on collagen fibers post-implantation. This indicates that even with similar final contents, constructs may behave differently depending on their development. Considering these aspects may help to engineer TE cartilage implants with improved survival rates.  相似文献   
46.
In the past few years, case-control studies of common diseases have shifted their focus from single genes to whole exomes. New sequencing technologies now routinely detect hundreds of thousands of sequence variants in a single study, many of which are rare or even novel. The limitation of classical single-marker association analysis for rare variants has been a challenge in such studies. A new generation of statistical methods for case-control association studies has been developed to meet this challenge. A common approach to association analysis of rare variants is the burden-style collapsing methods to combine rare variant data within individuals across or within genes. Here, we propose a new hybrid likelihood model that combines a burden test with a test of the position distribution of variants. In extensive simulations and on empirical data from the Dallas Heart Study, the new model demonstrates consistently good power, in particular when applied to a gene set (e.g., multiple candidate genes with shared biological function or pathway), when rare variants cluster in key functional regions of a gene, and when protective variants are present. When applied to data from an ongoing sequencing study of bipolar disorder (191 cases, 107 controls), the model identifies seven gene sets with nominal p-values0.05, of which one MAPK signaling pathway (KEGG) reaches trend-level significance after correcting for multiple testing.  相似文献   
47.
Advances in organelle interactomics have led to new insights into organelle functions. In this study, we considered the common mitochondrial PIN of four evolutionarily distant eukaryotic species, namely Homo sapiens, Mus musculus, Drosophila melanogaster and Caenorhabditis elegans. By comparative interactomics analysis of mitochondrial PINs in these organisms, five conserved modules were identified. Modules comprise the main mitochondrial tasks, including proteins involved in translation process, mitochondrial import inner membrane proteins, TCA cycle enzymes, mitochondrial electron transport chain, and metabolic enzymes. Furthermore, we reemphasize that subgraphs of network, i.e., motifs and themes, may represent evolutionarily conserved topological units which are biologically significant.  相似文献   
48.
49.
50.

Glioblastoma multiform (GBM) is known as an aggressive glial neoplasm. Recently incorporation of mesenchymal stem cells with anti-tumor drugs have been used due to lack of immunological responses and their easy accessibility. In this study, we have investigated the anti-proliferative and apoptotic activity of atorvastatin (Ator) in combination of mesenchymal stem cells (MSCs) on GBM cells in vitro and in vivo. The MSCs isolated from rats and characterized for their multi-potency features. The anti-proliferative and migration inhibition of Ator and MSCs were evaluated by MTT and scratch migration assays. The annexin/PI percentage and cell cycle arrest of treated C6 cells were evaluated until 72 h incubation. The animal model was established via injection of C6 cells in the brain of rats and subsequent injection of Ator each 3 days and single injection of MSCs until 12 days. The growth rate, migrational phenotype and cell cycle progression of C6 cells decreased and inhibited by the interplay of different factors in the presence of Ator and MSCs. The effect of Ator and MSCs on animal models displayed a significant reduction in tumor size and weight. Furthermore, histopathology evaluation proved low hypercellularity and mitosis index as well as mild invasive tumor cells for perivascular cuffing without pseudopalisading necrosis and small delicate vessels in Ator?+?MSCs condition. In summary, Ator and MSCs delivery to GBM model provides an effective strategy for targeted therapy of brain tumor.

  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号